Abstract

A flexible numerical method for the time-fractional telegraph equation is proposed and analyzed in this paper. The solution is discretized with a new finite difference scheme in time, and a local discontinuous Galerkin (LDG) method in space. We prove that the method is unconditionally stable and convergent with order $O(h^{k+1} + (\Delta t)^{3-\alpha})$, where $h$, $\Delta t$, $k$ are the space step size, time step size and degree of piecewise polynomial, respectively. Numerical experiments are carried out to illustrate the robustness, reliability, and accuracy of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call