Abstract
In this paper, we apply a local discontinuous Galerkin (LDG) method to solve some fractional inverse problems. In fact, we determine a timedependent source term in an inverse problem of the time-fractional diffusion equation. The method is based on a finite difference scheme in time and a LDG method in space. A numerical stability theorem as well as an error estimate is provided. Finally, some numerical examples are tested to confirm theoretical results and to illustrate effectiveness of the method. It must be pointed out that proposed method generates stable and accurate numerical approximations without using any regularization methods which are necessary for other numerical methods for solving such ill-posed inverse problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.