Abstract

A review of numerical methods for one-dimensional reaction-diffusion equations arising in combustion theory is presented. The methods reviewed include explicit, implicit, quasi-linearization, time linearization, operator-splitting, random walk and finite-element techniques and methods of lines. Adaptive and nonadaptive procedures are also reviewed. These techniques are applied first to solve two model problems which have exact traveling wave solutions with which the numerical results can be compared. This comparison is performed in terms of both the wave profile and computed wave speed. It is shown that the computed wave speed is not a good indicator of the accuracy of a particular method. A fourth-order time-linearized, Hermitian compact operator technique is found to be the most accurate method for a variety of time and space sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.