Abstract
The study of how buildings affect wind flow is an important part of the research being conducted on urban climate and urban air quality. NJU-UCFM, a standard <TEX>$k-{\varepsilon}$</TEX> turbulence closure model, is presented and is used to simulate how the following affect wind flow characteristics: (1) an isolated building, (2) urban canyons, (3) an irregular shaped building cluster, and (4) a real urban neighborhood. The numerical results are compared with previous researchers' results and with wind tunnel experiment results. It is demonstrated that the geometries and the distribution of urban buildings affect airflow greatly, and some examples of this include a changing of the vortices behind buildings and a "channeling effect". Although the mean air flows are well simulated by the standard <TEX>$k-{\varepsilon}$</TEX> models, it is important to pay attention to certain discrepancies when results from the standard <TEX>$k-{\varepsilon}$</TEX> models are used in design or policy decisions: The standard <TEX>$k-{\varepsilon}$</TEX> model may overestimate the turbulence energy near the frontal side of buildings, may underestimate the range of high turbulence energy in urban areas, and may omit some important information (such as the reverse air flows above the building roofs). In ideal inflow conditions, the effects of the heights of buildings may be underestimated, when compared with field observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.