Abstract
In this article, a mathematical model representing solution of the nonlinear generalized equal width (GEW) equation has been considered. Here we aim to investigate solutions of GEW equation using a numerical scheme by using sextic B-spline Subdomain finite element method. At first Galerkin finite element method is proposed and a priori bound has been established. Then a semi-discrete and a Crank-Nicolson Galerkin finite element approximation have been studied respectively. In addition to that a powerful Fourier series analysis has been performed and indicated that our method is unconditionally stable. Finally, proficiency and practicality of the method have been demonstrated by illustrating it on two important problems of the GEW equation including propagation of single solitons and collision of double solitary waves. The performance of the numerical algorithm has been demonstrated for the motion of single soliton by computing L∞ and L2 norms and for the other problem computing three invariant quantities I1,I2 and I3. The presented numerical algorithm has been compared with other established schemes and it is observed that the presented scheme is shown to be effectual and valid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.