Abstract

As a vital power propulsion device, gas turbines have been widely applied in aircraft. However, fly ash is easily ingested by turbine engines, causing blade abrasion or even film hole blockage. In this study, a three-dimensional turbine cascade model is conducted to analyze particle trajectories at the blade leading edge, under a film-cooled protection. A deposition mechanism, based on the particle sticking model and the particle detachment model, was numerically investigated in this research. Additionally, the invasion efficiency of the AGTB-B1 turbine blade cascade was investigated for the first time. The results indicate that the majority of the impact region is located at the leading edge and on the pressure side. In addition, small particles (1 μm and 5 μm) hardly impact the blade’s surface, and most of the impacted particles are captured by the blade. With particle size increasing, the impact efficiency increases rapidly, and this value exceeds 400% when the particle size is 50 μm. Invasion efficiencies of small particles (1 μm and 5 μm) are almost zero, and the invasion efficiency approaches 12% when the particle size is 50 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.