Abstract
A numerical model for pulsed gas metal arc welding (P-GMAW) was established to investigate the influence of the welding current on the fluid flow of arc plasma and filler metal in P-GMAW. Three sets of welding current waveforms with identical peak and base current but different median currents at the drop stage of current were used to conduct the experiment and numerical simulation. Bead-on-plate welding experiments under different current waveforms were conducted and the results showed that the waveform with a median current of 140 A had the best tolerance of the welding speed amongst the three current waveforms. Based on the mathematical modelling, the temperature profile and fluid flow of arc plasma and filler metal under different current waveforms were obtained and compared. The results showed that the waveform with a median current of 140 A could lead to lower droplet temperature and velocity when the droplet reached the workpiece compared with the other two waveforms. The simulated droplet shapes at different moments were compared with the captured images by a high-speed camera and they exhibited good agreements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.