Abstract

Pitting corrosion often leads to the creation of small holes in steel tubular member of platform structures when a protective coating is damaged. A single pit on slender compression element can cause a significant reduction in the buckling capacity of the member. Euler formula is no longer applicable for determining the critical buckling load when cutout presence on the member. This research was conducted to numerically study the effect of a circular hole on the buckling capacity of slender steel tubular member. A variation on hole positions was at 0.125 L, 0.25 L, 0.375 L, and 0.5 L, where L is the length of the member. The hole was taken to be 0.5 pipe diameter. Two nonlinear geometric 3D Finite Element models were developed to analyzed the member critical buckling load: (a) buckling analysis, where the problem was formulated as eigenvalue problem based on the nonlinear incremental equilibrium equations, and (b) nonlinear analysis, where the nonlinear equilibrium equations were developed and solved by several schemes to get the load – deflection curve. For the both models, the tubular member was discretized into: (a) shell elements, and (b) solid elements. The numerical results were verified by experimental investigation. The results showed that: (a) the presence of cutout reduced the buckling load significantly, (b) the reduction ranging from 3% to 10% depending on the hole positions, (c) the maximum reduction occurs when the hole position was in the middle of the member length, (d) compared to experimental results, the critical buckling load obtained from buckling analysis deviated 1~4% while those of nonlinear analysis deviated 1~5%, (e) the buckling mode corresponded with member bent away to opposite side of the cutout position.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.