Abstract
The aim of this study was to evaluate the load characteristics of steel and concrete tubular members under jet fire, with the motivation to investigate the jet fire load characteristics in FPSO topsides. This paper is part of Phase II of the joint industry project on explosion and fire engineering of FPSOs (EFEF JIP) ( Paik and Czujko, 2009; Paik, 2010). To obtain reliable load values, jet fire tests were carried out in parallel with a numerical study. Computational fluid dynamics (CFD) simulation was used to set up an adiabatic wall boundary condition for the jet fire to model the heat transfer mechanism. A concrete tubular member was tested under the assumption that there is no conduction effect from jet fire. A steel tubular member was tested and considered to transfer heat through conduction, convection, and radiation. The temperature distribution, or heat load, was analyzed at specific locations on each type of member. ANSYS CFX, (2008) and KFX, 2007 codes were used to obtain similar fire action in the numerical and experimental methods. The results of this study will provide a useful database to determine design values related to jet fire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.