Abstract

The mixing process of a fuel jet in a supersonic crossflow is one of the significant issues for the design of the scramjet combustor. In this paper, the orthogonal analysis was employed to investigate the influences of the parameters of the supersonic mainstream and the fuel jet on the mixing process. Eight variables were considered and 27 cases were performed by the three-dimensional Reynolds-averaged Navier-Stokes (RANS) coupled with the shear stress transport (SST) turbulence model. The results show that the jet patterns can be divided into three categories by calculating the velocity ratio, named attachment pattern, transition pattern, and separation pattern, respectively. The extreme difference analysis indicates that the total pressure and Mach number of the mainstream, the total pressure of the fuel jet, and the diameter of the jet hole have a remarkable impact on the penetration depth and total pressure recovery. Additionally, a new dimensionless number named BS was proposed. And the penetration depth and total pressure recovery can be fitted to different functions of the BS. The fitted curves show that the larger penetration depth and smaller total pressure loss are generated as the BS increases. Finally, another new dimensionless number named LJ was proposed. And a positive correlation between the LJ and mixing efficiency has been elaborated based on analyzing the influence mechanism of the streamwise vortexes and the shockwaves on the mixing process. These correlations can provide help for primary optimization of supersonic combustor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call