Abstract

Based on the optimization software ISIGHT, a new optimization method is constructed that the arbitrary polynomial blade modeling program is combined with numerical simulation software NUMECA to reduce the process of parameterizing the blade. With this method, the design parameters for the blade modelling process are chosen as optimization variables. Adopting this method, a single stage transonic axial-flow compressor rotor is optimized by choosing multiple design parameters as optimization variables. Optimization variables are the aerofoil maximum thickness, the location of aerofoil maximum thickness, the design attack angle, the variation of deviation angle, the skew design and the swept design on six design stream surfaces. The mass flow and the pressure ratio are confined and the optimization objective is that the adiabatic efficiency reaches its maximum. At design rotation speed, the adiabatic efficiency of the single stage transonic compressor has increased by 2.94% in design controlling condition after optimizing. The result shows that the optimization method combining arbitrary polynomial blade modeling program and NUMECA is feasible and valid. And the method that multiple design parameters are chosen as optimization variables can effectively improve the performance of transonic compressor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call