Abstract
A gas turbine engine consists of three primary components: a compressor, a combustion chamber, and a turbine. The operating range, performance, and reliability of gas turbine engines are limited by aerodynamic instabilities that occur in the compressor at low mass flow rates. Two of such compressor instabilities are rotating stall and surge. The stabilization of compression systems by means of active control has been demonstrated on several research compressors using different actuators such as inlet guide vanes, bleed valves, and air injection to manipulate the compressor flow field. This paper presents validated models of the steady and unsteady behaviors of air injection in high speed axial flow compressors that can be used for feasibility studies and control algorithm development. The steady air injection model consists of a control volume analysis coupled with wind tunnel measurements to characterize the changes in flow profiles entering the compressor and a streamline curvature analysis to model the response of the compressor blade rows to the different inlet span-wise profiles generated by the jet actuator. The steady air injection model was validated with experimentally measured span-wise profiles and compressor speed-lines, and then used to study the effect of hot air injection on the performance of a transonic compressor. The results show that injecting hot air into a transonic compressor has a potential increase in the operating range (i.e., decrease in the stalling mass flow rate) and a decrease in the total pressure rise across the transonic compressor. A modified theoretical stall inception model for high speed machines with air injection actuation is also presented. The compressible rotating stall inception model is a two-dimensional linearized stability model and pre-stall dynamics measurements from a single stage transonic compressor were used to validate the model. The compressible rotating stall inception model is an important tool that can be used for studying the effects of compressor design parameters on stability during compressor redesign, and for designing and evaluating feedback controllers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.