Abstract

AbstractWe study wind turbine wakes of rotors operating at high thrust coefficients (CT > 24/25) using large‐eddy simulations with a rotating actuator disk model. Wind turbine wakes at high thrust coefficients are different from wakes at low thrust coefficients. Wakes behave differently at high thrust, with increased turbulence and faster recovery. Lower induction in the wake is achieved because wakes in high‐thrust conditions recover much faster than in normal operating conditions. This enhanced recovery is possible thanks to the turbulence generated in the near wake. We explore the mechanism behind this behavior and propose a simple model to reproduce it. We also propose a Gaussian fit for the wakes under high‐thrust conditions and use it use it to initialize an Ainslie type model within the FAST.Farm framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.