Abstract

In the interaction between waves and structures, the maximum wave run-up height on the surface of the structure and the wave field distribution around the cylinder are important factors to be considered in the design of marine structures. In this paper, the open source software OpenFOAM is used to simulate the wave run-up phenomenon of a truncated cylinder under regular waves by solving the Reynolds-averaged Navier–Stokes equation. The established numerical model is verified with the experimental data, and the good consistency demonstrates the accuracy in simulating the interaction between waves and fixed truncated cylinders. The numerical results show that the draft of the cylinder under regular waves has little effect on its maximum wave run-up height, but has a significant effect on the horizontal wave force. At the same wave steepness, the radial dimensionless run-up height increases with the increase of scattering parameters ka, where k is the wave number and a is the cylinder radius. The radial run-up height decreases gradually along the radial direction in the upstream, and increases gradually along the radial direction in the downstream.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call