Abstract
Earlier, hydrological simulation calibration and validation relied on flow observations at hydrological stations, but multisource observations changed the basin hydrological simulation from single-flow validation to multivariate validation, including evaporation, soil water, and runoff. This study used the Soil and Water Assessment Tool (SWAT) distributed hydrological model to simulate and investigate hydrological processes in the Jinghe River Basin in China. After a single-station, single-variable calibration using flow observation data at the Zhangjiashan Hydrological Station, multisource data were used to validate actual evaporation, soil water, and runoff. Using the flow station data from Zhangjiashan station for parameter calibration and validation, the simulated values of R2, NSE, and KGE were all above 0.64, the PBIAS was within 20%, and the values of all the metrics in the calibration period were better than those in the validation period. The results show that the model performed satisfactorily, proving its regional applicability. Qingyang, Yangjiaping, and Zhangjiazhan stations had R2, NSE, and KGE values above 0.57 and PBIAS within 25% during regional calibration, considering spatial variability. Additionally, simulation accuracy downstream increased. R2, NSE, and KGE were above 0.50, and PBIAS was within 25% throughout validation, except for Qingyang, where the validation period was better than the calibration period. The Zhangjiashan station monthly runoff simulation improved after regional calibration. Runoff validation performed highest in the multivariate validation of evaporation–soil water–runoff, followed by actual evaporation and soil water content in China. The evaluation results for each hydrological variable improved after additional manual calibration. Multivariate verification based on multisource data improved the hydrological simulation at the basin scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.