Abstract
The sensitivity of liquid water to geometry of cathode gas microchannel in low-temperature fuel cells is investigated numerically. The two-phase flow is resolved using 3D CFD simulations with the volume-of-fluid (VOF) method. Simulations for microchannels with different cross-sections, including rectangle with aspect ratios in a range of 0.1–2, trapezoid, upside-down trapezoid, triangle, rectangle with a curved bottom wall, and semicircle are compared. The 0.5 aspect ratio rectangle yields the longest detachment time and the largest detachment diameter, whereas the longest removal time occurs for the 0.25 aspect ratio case. With decreasing aspect ratio for the rectangle the pressure drop increases and the coverage ratio decreases. The 0.1 and 2 aspect ratios rectangles have the largest water saturation. For microchannels with different cross-sections, the detachment time, detachment diameter, and removal time of the water droplet are found to be in this order: triangle < trapezoid < rectangle with a curved bottom wall < rectangle < upside-down trapezoid. The friction coefficient increases by a factor of 2–4 in the presence of water. The upside-down trapezoid yields the maximum coverage ratio and water saturation, while the rectangle with a curved bottom wall results in the minimum values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.