Abstract
This paper numerically and experimentally investigates the heat transfer performance and characteristics of liquid cooling heatsink containing microchannels. The effects of channel geometry and pressure drop between the entrance and exit of heatsink on the heat transfer performance are studied. The geometrical parameters include aspect ratio and cross-sectional porosity of the channels. The height of the microchannels is considered constant. The aspect ratio is set from 1.67 to 14.29 and the porosity is from 25% to 85%. The imposed pressure drop ranges between 490 and 2940 Pa. It is found that the aspect ratio corresponding to the lowest effective thermal resistance is changed with respect to the pressure drop. It is also noticed that the value of effective thermal resistance is almost a constant for cross-sectional porosity in the range of 53%–75%. The effective thermal resistance is increased when cross-sectional porosity is deviated from this range. In addition, the increasing of pressure drop enhances heat transfer performance for channels of high aspect ratio more than those of low aspect ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Heat and Mass Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.