Abstract

In the current study, the turbulent cavitation flow around a marine propeller in a nonuniform wake is simulated with the shear stress transport (k−ω SST) turbulence model combining Zwart–Gerber–Belamri (ZGB) cavitation model. The predicted cavity evolution shows a fairly well agreement with the available experimental results. Important mechanisms of propeller cavitation flow, including side-entrant jet and cavitation-vortex interaction, are analyzed in this paper. Vorticity is found to be mainly located in cavitation regions and the propeller wake during propeller rotating. The unsteady behavior of cavitation and side-entrant jet can both promote local vorticity generation and flow unsteadiness. In addition, it is indicated with the relative vorticity transport equation that the stretching term plays a major role in vorticity transportation, while baroclinic torque and Coriolis force term mainly influence the vorticity distribution along the liquid-vapor interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.