Abstract

Two-microbubble collapse near a spherical cell in an ultrasonic field is numerically analyzed by extending a level-set method for compressible multiphase flows with bubble and cell multiple interfaces. Computations performed with different bubble-bubble distances and size ratios demonstrate various bubble-bubble interactions, such as bubble coalescence, bubble repulsion and attraction, jet penetration into the bubble, and jet collision. The interactions between collapsing bubbles are found to produce strong liquid jet formation and result in significant cell deformation compared to single-bubble collapse. The optimal bubble-bubble distance and size ratio for cell deformation are presented via contour maps based on extensive computations. The influences of the ultrasonic amplitude and frequency on cell deformation are further investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call