Abstract

The incompressible laminar isothermal flow of a Newtonian fluid at steady state around a surface-mounted rib is studied in a three-dimensional (3D) numerical experiment. The dimensionless Navier–Stokes equations are solved numerically using the Galerkin finite element method for Reynolds numbers 1 to 800. The expansion ratio of the problem is 1:9.6, while the aspect ratio is 1:20. The transition from the steady to the unsteady state and the identification of the critical Reynolds number are investigated in this paper. Numerical results of the skin-friction lines at the bottom and streamlines throughout the computational field are presented. A comparison between the 2D and 3D flow is made to show the effect of the walls on the flow, which reaches the plane of symmetry and affects the flow there; hence, also affecting the stability of the flow. It is concluded that the flow is three-dimensional even for a Reynolds number equal to 10. The critical Reynolds number is 600, and the steady-state equations can be used for any calculations up to this value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call