Abstract
One of the most important problems of geotechnical engineering is the design of pile foundations. Piles are generally designed for vertical and horizontal static loads. However, it is important to design piles against dynamic loads in regions with high seismicity. This study verified a centrifuge experiment obtained from the literature with a finite element program. With the kinematic interaction analyses performed for this purpose, the effect of parameters such as layered soil, groundwater, pile stiffness, and earthquake acceleration were investigated numerically. According to the results obtained, it was understood that the earthquake magnitude is the most important parameter in kinematic interaction analyses. In addition, in layered soil conditions, the fact that 75% of the pile length is in the weak soil creates the most unfavorable situation. It was observed that pile stiffness and groundwater level also have certain effects on the kinematic interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.