Abstract

Poly(ethylene glycol) diacrylate (PEGDA) hydrogels can be used as scaffold material for tissue engineered heart values (TEHVs) providing a promising alternative to generate suitable heart valve replacement method. The patterning of PEGDA hydrogels using photolithographic techniques creates materials that mimic the mechanical behavior of native heart valve tissues. However, targeted material properties are obtained via a trial-and-error process. Depending on experiments alone to explore the influence of pattern topology is expensive and time-consuming. We combine a newly proposed computational framework with published experimental data to numerically investigate the influence of pattern geometry on the mechanical behavior of patterned PEGDA hydrogels. The numerical strategy and simulation results presented here can provide guidance to optimize the design of PEGDA hydrogels with targeted material properties, therefore advance the development of TEHVs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call