Abstract
The uniformity of film deposition on charged nanoparticles, trapped near the sheath of a capacitively coupled plasma reactor, is studied by numerical simulation of the multi-fluid plasma equations, surface deposition processes, and nanoparticle heating effects. It is found that the anisotropy in the ion flux onto the powered electrode may be hold responsible for the film nonuniformity. The nonuniformity increases with increasing of the particle radius, although small particles lose sphericity faster than the large particles. Because of the electron temperature dependence of the deposition rate and the incident ion flux, higher electron temperatures lead to more nonuniform film deposition. However, the uniformity is improved and the sphericity is restored by the increase in the background gas pressure and/or temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.