Abstract

The aim of this paper is to present a solution algorithm for determining the frame element crosssection carrying capacity, defined by combined effect of bending moment and axial force. The distributions of stresses and strains inside a cross-section made of linearly hardening material are analysed. General nonlinear stress-strain dependencies are composed. All relations are formed for rectangular cross-section for all possible cases of combinations of axial force and bending moment. To this end, five different stress-strain states are investigated and four limit axial force values are defined in the present research. The nonlinear problem is solved in MATLAB mathematical software environment. Stress-strain states in the cross-sections are investigated in detail and graphically analysed for two numerical experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call