Abstract

A supersonic ejector with desirable performance characteristics reduces the energy consumption rate of an ejector refrigeration system and increases its coefficient of performance (COP). In this paper, the effects of using different primary nozzles on the performance of a supersonic ejector of an ejector refrigeration system have been numerically studied, while the working fluid is steam. To this end, conical, Rao and parallel-flow primary nozzles with identical converging portions and equal exit area to throat area ratios have been tested. The diverging portion curves for the parallel-flow and Rao nozzles were derived using the method of characteristics. Using the Rao nozzle, the critical entrainment ratio and the critical back pressure were increased compared to the conical nozzle by 6.3% and 2.08%, respectively. It was also found that the physics of the internal flow of the ejector was changed by changing the diverging curve of the primary nozzle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.