Abstract
Time accurate numerical simulations were conducted to investigate the effect of triangular cavities on the unsteady aerodynamic characteristics of NACA 0012 airfoil at a Reynolds number of 50,000. Right-angled triangular cavities are placed at 10%, 25% and 50% chord location on the suction and have depths of 0.025c and 0.05c, measured normal to the surface of the airfoil. The second-order accurate solution to the RANS equations is obtained using a pressure-based finite volume solver with a four-equation transition turbulence model, γ–Re θt, to model the effect of turbulence. The two-dimensional results suggest that the cavity of depth 0.025c at 10% chord improves the aerodynamic efficiency ( l/d ratio) by 52%, at an angle of attack of α = 8°, wherein the flow is steady. The shallower triangular cavity when placed at 25%c and 50%c enhances the l/d ratio by only 10% and 17%, respectively, in the steady-state regime of angles of attack between α = 6° and 10°. The deeper cavity also enhances the l/d ratio by up to 13%, 22% and 14% at angles of attack between α = 6° and 10°. Even in the unsteady vortex shedding regime, at α =12° and higher, significant improvements in the time-averaged l/d ratios are observed for both cavity depths. The improvements in l/d ratio in the steady-state, pre-stall regime are primarily because of drag reduction while in the post-stall, unsteady regime, the improvements are because of enhancements in time-averaged C l values. The current finding can thus be used to enhance the aerodynamic performance of MAVs and UAVs that fly at low Reynolds numbers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have