Abstract
A fixed-bed reactor for the production of hydrogen via sorption-enhanced steam methane reforming (SE-SMR) is investigated. Pseudo-homogeneous and heterogeneous models have been formulated and used to simulate the process performance. The capture kinetics of CO2 on Li2ZrO3 have been characterized experimentally for determination of a kinetic model that is used in the simulations of SE-SMR. The simulations show that hydrogen with purities of >87 mol % can be produced at a temperature of 848 K and a total pressure of 10 bar, but with long reactors and low production capacities. To make SE-SMR an industrial alternative, materials with better capture properties are required.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have