Abstract
In the framework of the German Collaborative Research Center CRC 880: Fundamentals of High Lift for Future Civil Aircraft porous materials as a means towards the reduction of airfoil trailing edge noise are investigated. At DLR, both experimental and numerical approaches are pursued to understand the physics behind the noise reduction. The present paper focuses on the numerical investigations, for which the experimental data serves as an evaluation basis. From the analysis of homogeneous materials, first steps are made towards the design of aeroacoustically tailored materials. It is assumed that materials with locally varying permeability may be suitable to achieve maximum noise reduction, as they provide a smooth transition from the solid airfoil to the free flow in the wake. The simulation results support this understanding, however it is revealed that high local gradients in the material properties themselves may act as acoustic sources.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have