Abstract

In this work, a hybrid battery thermal management system using active cooling and Phase Change Material (PCM) has been studied. The additional weight of PCM poses design challenges, and hence its optimization is required. In this regard, a PCM enclosure of a cylindrical structure with six cylindrical cells is considered in 6-row and 1-column arrangement in the present work. The thermal performance of the proposed system is numerically investigated with different thicknesses of PCM layers at constant heat generation and coolant (air) flow rates. It is found that the battery thermal management with only PCM shows unsatisfactory performance under extended severe operating conditions. However, the addition low-flow convectional cooling improved the performance and the system’s reliability. It is found that for the proposed system, PCM thickness of 1 mm for the first battery cell and 2 mm for the subsequent battery cells help in better heat dissipation showing minimal thermal non–uniformity (1.1 °C) and reduced maximum temperature (39.6 °C) within the battery pack. Consequently, the optimized system shows 68.3% reduction in PCM mass as compared to the case of uniform thickness of the PCM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call