Abstract

Utilizing thermal storage units such as Phase Change Materials (PCMs) is a suitable approach to improving Solar Air Heaters (SAHs). The present study tries to assess the effects of PCM mass values on the heat dynamics and thermal performance of SAHs. To this aim, an analytical thermodynamic model was developed and validated by available experimental data. This model provides a robust numerical framework to model the phase change phenomenon and analyze the heat dynamics and thermal performance of SAH using various PCM masses. Four scenarios were considered using the developed analytical model including SAHs using 0, 30, 60, 90 kg PCM. The obtained results illustrated that the maximum outlet temperature was reduced, approximately near 20 %, by increasing the PCM mass between 0 and 90 kg; however, heating time was extended to periods when solar energy availability was inadequate. The thermal performance improved by nearly 14.5 % in the SAH using 90 kg PCM mass compared to the SAH without using PCM. The thermal performance of the SAH with 90 kg PCM was slightly higher than the SAH using 30 kg of PCM; hence, a significant portion of stored thermal energy was lost during nighttime through heat exchange with ambient surroundings. The obtained results also showed that despite available latent thermal energy, the outlet air temperature profiles for the SAHs using different PCM mass were close after sunset due to the low thermal conductivity of paraffin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call