Abstract

The intrusion of micrometer-sensitive contaminant particles into the clearance of sliding valves within hydraulic fluids is one of the root causes of valve sticking and reliability issues in hydraulic systems. To reveal the transient process and characteristics of particle intrusion into the clearance process, this paper proposes a numerical method for fluid–particle one-way coupling and verifies it through experimentation. Furthermore, a numerical simulation of the motion trajectory of spherical iron particles inside the valve chamber was conducted in a two-dimensional flow model. It was discovered that in a steady-state flow field with a certain valve opening, micrometer-sized particles in the valve chamber’s hydraulic fluid mainly move with the valve flow stream, and the number of micron particles invading the slide valve clearance and the probability of invasion is related to the slide valve opening and differential pressure. When the slide valve opening decreases, especially in the small opening state, the probability of particles invading the slide valve clearance will increase dramatically, and the probability of invading the clearance is as high as 27% in a valve opening of 50 μm; the larger the pressure difference between the valve ports, the more the number of particles invading the slide valve clearance increases; the particles in the inlet of the slide valve clearance are more prone to invade the slide valve clearance, and invade in an inclined way, touching the wall and then bouncing back. These findings are of great value for the design of highly reliable hydraulic control valves and the understanding of the mechanism of slide valve stalls and provide an important scientific basis for the optimization and improvement in the reliability of hydraulic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call