Abstract

This study examines thermal diffusion's impact on thermal transport in magnetohydrodynamic (MHD) mixed convection using the Cattaneo–Christov thermal flux framework. It investigates a fluid with Maxwellian nature over an extending sheet with a magnetic field, thermal dissipation, and suction/injection phenomena. By transforming the governing partial differential equations into interconnected ordinary differential equations, the study employs the RK-Fehlberg technique for computational calculations. The results align with previous research, showcasing velocity and temperature profiles, local skin-friction coefficient, local Nusselt number, and thermal generation for different parameters. The study concludes that porosity and Deborah number notably affect the skin-friction coefficient and Nusselt number, with increased porosity and heat generation enhancing the Nusselt number while reducing the skin-friction coefficient in Maxwell fluids. The work's novelty lies in considering thermal diffusion effects and the combined influence of magnetic field, thermal dissipation, and suction/injection phenomena, offering valuable insights into porosity and heat generation in Maxwell fluids' thermal transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call