Abstract
A two-dimensional, single-phase, isothermal model has been developed for a direct methanol fuel cell (DMFC). The model considers the anode and cathode electrochemical equations, continuity, momentum and species transport in the entire fuel cell. Then, the equations are coupled together and solved simultaneously using a commercial, finite element based, COMSOL Multiphysics software. The crossover of methanol is also investigated in the model. This model describes the electrochemical kinetics of methanol oxidation at the anode catalyst layer by non-Tafel kinetics. The concentration distribution of methanol, water, and oxygen was predicted by the model. In addition, the changes of methanol crossover and fuel utilization with current density were evaluated for different methanol concentrations (0.5 M, 1 M, 2 M, 4 M, and 6 M). Furthermore, it was also found that the crossover of methanol decreases at low methanol concentrations and high current densities. The results show that the polarization curve is in agreement with experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.