Abstract

A three-dimensional unsteady two-phase model for the cathode side of proton exchange membrane fuel cell (PEMFC) consisting of gas diffusion layer (GDL) with hybrid structural model is developed to investigate liquid water behaviors under different operating and geometrical conditions and to quantitatively evaluate effects of liquid water distribution on reactant transport and current density distribution. Simulation results reveal that liquid water transport processes and distributions are significantly affected by inlet air velocity, wall wettability and water inlet position, which in turn play a prominent role on local reactant transport and cause considerable disturbances of the current density. Liquid water film spreading on the gas channel (GC) top wall is identified as the most desirable flow pattern in the GC based on overall evaluations of current density magnitude, uniformity of current density distribution and pressure drop in the GC. Modification to GDL structure is proposed to promote the formation of the desirable flow pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call