Abstract

In this paper, vortex shedding and suppression are numerically investigated as autonomous and non-autonomous dynamical systems respectively. Lagrangian coherent structures (LCSs) are used as a numerical tool to analyze these systems. These structures are ridges of Finite time Lyapunov exponent (FTLE) which act as material surfaces that are transport barriers within the flow. Initially, the utility of LCSs is explored for revealing the coherent structures of these systems. Finally, an active flow control method, steady rotation is applied to the non-autonomous dynamical system with different speed ratios to mitigate vortex shedding magnitude. This will eventually turn the system into an autonomous system. Fixed saddle points, separation profiles essentially as unstable time variant manifolds attached to cylinder wall and evolution of other unstable manifolds with variant speed ratios are analyzed with reference to LCSs. It is revealed that speed ratio of 2.1 fully suppresses the von Karman vortex street at Reynolds number of 100 and system turns into an autonomous dynamical system with fixed saddle points and time-invariant manifolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.