Abstract

Multi-inlet cyclone separators can play a vital role in industrial processes by enhancing particle separation efficiency and minimizing energy consumption. This numerical study investigates multi-inlet cyclone separators to enhance their performance using a constant flow rate with a varying inlet height and width. By systematically varying the inlet height and width, three-inlet and four-inlet cyclone separators are developed and evaluated, termed 3 inlet-a, 4 inlet-a, 3 inlet-b, and 4 inlet-b. The findings reveal that increasing the number of inlets without changing the total inlet area does not improve the separation performance. However, strategic modifications to the inlet height and width significantly enhance the separation efficiency. Notably, the 3 inlet-a and 4 inlet-a designs achieve higher separation efficiencies at a 1.22 m3/s flow rate without increasing the pressure drop. Meanwhile, the 3 inlet-b and 4 inlet-b models demonstrate superior performances, with a higher separation efficiency and a pressure drop only marginally higher than the two-inlet design. This study provides valuable insights into the impact of inlet variations on cyclone separator performance, guiding future efforts to enhance the separation efficiency in multi-inlet designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.