Abstract

Hypersonic flow of Mach number 8 past a 25°-50° double cone geometry is numerically simulated at ReD=4.8E5. Complicated flow structures, including Type V shock-shock interaction, shock-boundary layer interaction, separation and reattachment at the corner are presented and discussed. The surface pressure and heat transfer rate distributions are also calculated and compared with the experimental data. Results show that both the 2nd order MUSCL and 5th order WENO could accurately reproduce the shock structures, while the higher order scheme could predict a more accurate size of separation zone. Generally, the size of the separation zone is underestimated with an overvalued pressure distribution after reattachment employing the full turbulent models. On the other hand, transition induced by the reattachment shock has been calculated using transition model and the results of pressure peak and the size of separation zone show good agreement with the experimental measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call