Abstract

In this study, a Schottky diode consisting of Au/GaN/GaAs was fabricated using a radiofrequency nitrogen plasma source. The voltage-conductance characteristics (G/ω-V) of this diode structure were investigated at room temperature. To interpret the changes in the electrical properties of the nitrided GaAs-based Schottky structure, we developed a simulation program. This program employs a numerical model to calculate the G-V characteristics, allowing us to validate the experimental measurements conducted on the Schottky diodes. The geometric model used in our simulation considers not only the GaN layer formed between the metal and GaAs substrate but also the density and distribution of trapped states within the band gap. The program utilizes the numerical resolution of the Poisson and continuity equations to calculate the electrostatic potential and the concentrations of both n and p mobile carriers. These parameters are then used to determine the electric charge, current, capacitance, and conductance. The simulation results were subsequently compared to the experimental measurements to ensure their accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.