Abstract

To discover the characteristic of separated flows and mechanism of plasma flow control on a highly loaded compressor cascade, numerical investigation is conducted. The simulation method is validated by oil flow visualization and pressure distribution. The loss coefficients, streamline patterns, and topology structure as well as vortex structure are analyzed. Results show that the numbers of singular points increase and three pairs of additional singular points of topology structure on solid surface generate with the increase of angle of attack, and the total pressure loss increases greatly. There are several principal vortices inside the cascade passage. The pressure side leg of horse-shoe vortex coexists within a specific region together with passage vortex, but finally merges into the latter. Corner vortex exists independently and does not evolve from the suction side leg of horse-shoe vortex. One pair of radial coupling-vortex exists near blade trailing edge and becomes the main part of backflow on the suction surface. Passage vortex interacts with the concentrated shedding vortex and they evolve into a large-scale vortex rotating in the direction opposite to passage vortex. The singular points and separation lines represent the basic separation feature of cascade passage. Plasma actuation has better effect at low freestream velocity, and the relative reductions of pitch-averaged total pressure loss coefficient with different actuation layouts of five and two pairs of electrodes are up to 30.8% and 26.7% while the angle of attack is 2°. Plasma actuation changes the local topology structure, but does not change the number relation of singular points. One pair of additional singular point of topology structure generates with plasma actuation and one more reattachment line appears, both of which break the separation line on the suction surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call