Abstract
This paper presents results of a numerical analysis of entropy generation in a parabolic trough receiver at different concentration ratios, inlet temperatures and flow rates. Using temperature dependent thermal properties of the heat transfer fluid, the entropy generation due to heat transfer across a finite temperature difference and entropy generation due to fluid friction in the receiver has been determined. Results show a reduction in the entropy generation rate as the inlet temperature increases and an increase in the entropy generation rate as the concentration ratio increases. Results further show that, there is an optimal flow rate at which the entropy generated is a minimum, for every combination of concentration ratio and inlet temperature. The optimal flow rates at which the entropy generated is minimum are presented for different flow rate and concentration ratio, and the results are the same irrespective of the inlet temperature considered. For the range of inlet temperatures, flow rates and concentration ratios considered, the Bejan number, which measures the contribution of entropy generation due to heat transfer irreversibility to the total entropy generation rate is about 1 at low flow rates and is between 0 and 0.24 at the highest flow rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.