Abstract
Bacterial biofilm accumulation around dental implants is a significant problem leading to peri-implant diseases and implant failure. Cavitation occurring in the cooling water around ultrasonic scaler tips can be used as a novel solution to remove debris without any surface damage. However, current clinically available instruments provide insufficient cavitation around the activated tip surface. To solve this problem a critical understanding of the vibro-acoustic behaviour of the scaler tip and the associated cavitation dynamics is necessary. In this research, we carried out a numerical study for an ultrasound dental scaler with a curved shape tip vibrating in water, using ABAQUS based on the finite element method. We simulated the three-dimensional, nonlinear and transient interaction between the vibration and deformation of the scaler tip, the water flow around the scaler and the cavitation formation and dynamics. The numerical model was well validated with the experiments and there was excellent agreement for displacement at the free end of the scaler. A systematic parametric study has been carried out for the cavitation volume around the scaler tip in terms of the frequency, amplitude and power of the tip vibration. The numerical results indicate that the amount of cavitation around the scaler tip increases with the frequency and amplitude of the vibration. However, if the frequency is far from the natural frequency, the cavitation volume around the free end decreases due to reduced free end vibration amplitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.