Abstract

This study was focused on the theoretical modeling and numerical investigation about the dynamic and static stiffness of spindle system of high speed grinder. The moment balance and the transition matrix, the state vector, field matrix of spindle system of high speed grinder were analyzed and deduced. The theoretical models about dynamic and static stiffness were established using the transfer matrix method. The numerical results showed that increas of the preload could result in the improvement of static stiffness of spindle end within the range of its working speed; the reduction of front overhang length would improve the stiffness of spindle end, as well as the dynamic stiffness of spindle at the working speed; the stiffness of spindle end decreased with the increase of speed with different bearing spans within the range of working speed of spindle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.