Abstract

This study was focused on the theoretical modeling and numerical investigation about the dynamic and static stiffness of coupled double-rotor spindle system of high speed grinder. The moment balance and the transition matrix, the state vector, field matrix of spindle system of high speed grinder were analyzed and deduced. The theoretical models about dynamic and static stiffness were established using the transfer matrix method. The numerical results showed that increased rigidity of front bearing significantly increased static and dynamic rigidity of spindle end and the rigidity of front bearing increased, dynamic rigidity increased more significantly than static rigidity. Furthermore, it can be conclued that increased overhang length reduced dynamic and static rigidity of spindle end at an increasingly slower rate and the span of bearing increased, static and dynamic rigidities of spindle end were reduced

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.