Abstract

The local buckling behaviour of high strength steel (HSS) hexagonal hollow section (HexHS) stub columns encompassing three different fabrication routes under axial compression is numerically investigated in this study. Finite-element (FE) models were developed and validated against the experimental results. The validated FE models were subsequently employed to carry out parametric studies to expand structural performance data covering a wider range of geometries and cross-section slenderness as well as two different steel grades. The obtained results from FE models in line with the experimental data were used to evaluate the applicability of the existing design codes and the design approaches in literature to HSS HexHS under pure compression. The comparison indicates that the current slenderness yield limiting values in design codes cannot be simply extended to HSS HexHS stub columns. All the design codes exhibit a high degree of conservatism due to the lack of consideration for strain hardening whereas the Continuous Strength Method (CSM) was found to provide more accurate predictions than the Direct Strength Method (DSM). Modified design approaches are proposed to improve the accuracy of the strength predictions for HSS HexHS stub columns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.