Abstract
Cross-section behaviour for cold-formed high strength steel (HSS) irregular hexagonal hollow section (IHexHS) stub columns under combined compression and bending is studied and presented in this paper. Finite element models were developed and validated using the existing experimental data collated from the previous research. Upon the validated finite element models, extensive parametric studies were subsequently carried out to generate more numerical data covering a wider range of cross-section dimensions, steel grades and load combinations from pure compression to pure bending. The obtained numerical results were utilised to assess the accuracy and the applicability of the current design codes, such as Eurocode of EN 1993-1-12 (EC3) and the North American code of ANSI/AISC 360-16 (AISC) for cold-formed HSS IHexHS stub columns under combined loading. It was demonstrated that the existing design codes can be safely applied and can be extended for cold-formed HSS IHexHS stub columns design under combined loading. In cross-sectional resistance predictions, conservative results were provided from the existing design codes. The over-predictions were primarily due to the neglect of the strain hardening and plate element interaction. The end points used in the interaction curves of EC3 and AISC adopt an idealised elastic-plastic material model to derive the corresponding resistance in cross-sectional level. The employment of Continuous Strength Method (CSM) leads to improved accuracy in cross-sectional resistance prediction with updated end points in the interaction curve. More consistent and reliable predictions were revealed by carrying out reliability analysis in accordance with EN 1990.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.