Abstract
Some multi degree-of-freedom dynamical systems exhibit a response that contain fast and slow variables. An example of such systems is a multibody system with rigid and deformable bodies. Standard numerical integration of the resultant equations of motion must adjust the time step according to the frequency of the fastest variable. As a result, the computation time is sacrificed. The singular perturbation method is an analysis technique to deal with the interaction of slow and fast variables. In this study, a numerical integration scheme using the singular perturbation method is discussed, its absolute stability condition is derived, and its order of accuracy is investigated.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have