Abstract

Accurate weather data plays an important role in the evaluation of building energy consumption in urban areas. The local air temperature and local wind speed can vary significantly due to the influence of microclimate conditions, while those parameters have a significant effect on energy demand especially in the summer. This study provides a new coupled numerical approach that building energy simulation (BES), using the airport weather data, transfers building surface temperature data to computational fluid dynamics (CFD) as the boundary conditions. In addition, the outdoor thermal environment is simulated using the CFD method and local weather data is calibrated and transferred to BES as the real-time meteorological data. A daily coupled simulation is performed for a building located in a specified urban density accounting for actual wind speed and direction. The comparison shows that the difference for daily building energy consumption is up to 2.5% using the airport weather data and local weather data. Therefore, accurate estimation of local weather data is necessary when on-site measured data is not available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call