Abstract
The Mittag-Leffler function is computed via a quadrature approximation of a contour integral representation. We compare results for parabolic and hyperbolic contours, and give special attention to evaluation on the real line. The main point of difference with respect to similar approaches from the literature is the way that poles in the integrand are handled. Rational approximation of the Mittag-Leffler function on the negative real axis is also discussed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have