Abstract

Assuming thermal balance and solute conservation, a numerical model has been proposed to describe the recalescence behavior of bulk-undercooled Cu–Ni melts. Applying a finite-difference scheme, the transformed solid fraction upon recalescence is given as a function of the liquid temperature, while the average liquid concentration can be tracked by calculation of the liquid/solid (L/S) Gibbs energy difference, in combination with a dendrite growth model. Accordingly, a transition from non-equilibrium to equilibrium process has been described from the evolution of L/S Gibbs energy difference. Applying the present model, the experimentally observed maximum recalescence temperature can be well predicted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.