Abstract

The dendritic growth of pure materials in undercooled melts is critical to understanding the fundamentals of solidification. This work investigates two new insights, the first is an advanced definition for the two-dimensional stability criterion of dendritic growth and the second is the viability of the enthalpy method as a numerical model. In both cases, the aim is to accurately predict dendritic growth behavior over a wide range of undercooling. An adaptive cell size method is introduced into the enthalpy method to mitigate against ‘narrow-band features’ that can introduce significant error. By using this technique an excellent agreement is found between the enthalpy method and the analytic theory for solidification of pure nickel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call